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Abstract. The electronic phase separation in doped antiferromagnetic semiconductors and
materials exhibiting colossal magnetoresistance, with the charge-carrier densityn close to the
densitynu at which the entire crystal becomes ferromagnetic, is investigated theoretically. The
case of wide s bands and that of double exchange are investigated. Atn < nu a first-order
phase transition from the phase-separated state to the ferromagnetic state should take place on
increase of the temperature. Atn > nu a re-entrant phase separation is possible when, with
increasing temperature, first, the first-order phase transition from the ferromagnetic state to the
phase-separated state takes place and, then, the latter melts.

1. Introduction

Electronic phase separation, predicted theoretically for degenerate magnetic semiconductors
by one of the present authors in 1972 [1, 2], is now firmly established (see the review
article [3]). For degenerate antiferromagnetic semiconductors, the reason for the phase
separation occurring is as follows [1–4]. The energy of the charge carriers is minimal
when the ferromagnetic ordering sets in. For this reason, they tend to establish it in an
initially antiferromagnetic crystal. But, if the density of charge carriers is insufficient for
establishing the ferromagnetic ordering throughout the entire crystal, they may concentrate
in a certain portion of the crystal and make it ferromagnetic. The rest of the crystal remains
insulating and antiferromagnetic. As the ionized donors are frozen and cannot diffuse at
actual temperatures, this constitutes simultaneous charge separation in the crystal, when, for
example, the ferromagnetic portion is charged by the excess conduction electrons negatively
and the antiferromagnetic portion is charged by ionized donors positively. On increase in
the densityn, the size of the ferromagnetic portion increases until the entire crystal becomes
ferromagnetic at a certain densitynu.

In the case considered, the phase-separated state is the ground state of the crystal. In
this respect it differs basically from the well known phase separation at the temperature of
the first-order phase transition. On increase in temperature, the phase separation disappears,
and the state of the crystal becomes uniform as a result of a first-order or second-order
phase transition [5]. But the investigations in [5] were carried out for densities far below
nu. So, a study of the phase diagram close tonu is worth carrying out.

In what follows, it will be shown that atn < nu a phase-separated state can be abruptly
replaced by a uniform ferromagnetic state, on increase in temperature.
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Even more interesting is the case in which the electron density in an antiferromagnetic
crystal is so high that the ground state is ferromagnetic. It will be shown here that an
increase in temperature can cause phase separation with formation of a highly conductive
ferromagnetic phase and an insulating antiferromagnetic phase. On further increase in
temperature, the phase-separated state disappears again, so phase separation manifests itself
as a re-entrant phenomenon.

The present treatment supplements the theory from [1–5] in yet another respect.
Colossal-magnetoresistance materials are believed to be, in essence, heavily doped
antiferromagnetic semiconductors with double exchange. For this reason the treatment
of [1–5] carried out for wide-band materials is generalized here to the case of narrow-band
materials, to which double exchange corresponds.

Now the experimental situation will be discussed briefly. In addition to the degenerate
antiferromagnetic semiconductors EuSe and EuTe, HTSC have recently been observed to
exhibit phase separation (see [3]). The problem of the electronic phase separation is highly
relevant for colossal-magnetoresistance materials, too. In the pioneering investigation [6] it
was established by means of neutron studies that La1−xCaxMnO3 displays ferromagnetic–
antiferromagnetic phase separation in the ground state, though the nature of this separation
was not established, and it was not shown that it is just electronic and not chemical. NMR
investigations [7] show that in La0.5Ca0.5MnO3 ferromagnetic and antiferromagnetic phases
exist below the Curie point. The authors of [7], on the basis of the theory from [1, 2],
explain this fact by electronic phase separation.

Quite recently, experimental evidence was obtained showing that, above the Curie
point, long-lived antiferromagnetic clusters coexist with ferromagnetic critical fluctuations
in ferromagnetic La1.2Sr1.8Mn2O7 [8]. This situation resembles re-entrant phase separation,
the notion of which is formulated in the present paper.

2. A model of the phase-separated state

In this section an investigation of the phase separation in a degenerate antiferromagnetic
semiconductor first undertaken in [1, 2] will be continued. The s–d model will be used again.
The treatment carried out here is based on the standard s–d model with the Hamiltonian

H =
∑

Eka
∗
k,σ ak,σ −

A

N

∑
(s · Sg)σ,σ ′exp{i(k − k′) · g}a∗k,σ ak′,σ ′ −

I

2

∑
SgSg+∆

(1)

wherea∗k,σ , ak,σ are the s-electron operators corresponding to the conduction electrons or
holes with the quasimomentumk and spin projectionσ , s represents the spin operator and
Sg that of the d spin at the siteg, ∆ is the vector connecting the first-nearest neighbours, and
N is the number of atoms in the crystal region considered. The first term in equation (1)
is the s-electron kinetic energy, the second is the s–d exchange energy, and the third is
the exchange interaction between d spins which in what follows will be called the direct
exchange. For the sake of definiteness, the s–d exchange integralA is assumed to be
positive.

First, like in [1–5], it will be assumed that the s-electron bandwidthW greatly exceeds
the energyAS of the s–d exchange, whereS is the d-spin magnitude. Then the treatment
will be generalized to include the opposite limiting caseW � AS (‘the double exchange’),
which, as is usually believed, is more appropriate for the colossal-magnetoresistance
materials. The phase separation was not considered in this case yet.

Only the case of relatively large s-electron densities will be considered, when the entire
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crystal or its greater part is ferromagnetic. Like in [1–5], a variational procedure will
be used to obtain the free energyF . To reduce the Coulomb energy, the two phases
should be intermixed. We will use results already established in [1, 2]: to ensure the
minimal energy, the geometry of the phase-separated state should correspond to small anti-
ferromagnetic insulating droplets of spherical shape forming a superlattice inside the ferro-
magnetic highly conductive host. The variational parameters are the ratiox of the volumes
of the antiferromagnetic and ferromagnetic phases and the radiusR of the antiferromagnetic
droplet.

In the wide-band case,AS � W , only temperatures at which the conduction electrons
are completely spin polarized are considered for the sake of simplicity. This means that the
inequalityAM > µ holds, whereµ is the Fermi energy, andM the average magnetization
per atom. Then, with account taken of the strong degeneracy of the electron gas, the trial
free energy is given by the expression

F = EB + ES + EC + FM (2)

whereEB is the bulk s-electron kinetic energy:

EB = 3

5
µ(n)n(1+ x)2/3 (3)

where

µ(n) = (6π2n)2/3

2m
(h̄ = 1).

Heren is the average electron density, andm is the s-electron effective mass; the volume
of the system is set equal to 1.

The notationES is used for the electron surface energy, i.e. for the correction to the
electron kinetic energy arising due to the fact that the electron motion is restricted by the
ferromagnetic portion of the crystal (in fact, this energy takes into account the electron level
spatial quantization in a bounded region in the Born–Oppenheimer approximation):

ES = 15

16

(
π

6

)1/3
xEB

n1/3(1+ x)1/3R . (4)

The Coulomb energyEC is calculated using the jellium model for the ionized donors.
The crystal is separated into the Wigner cells, i.e. into spheres enveloping the antiferro-
magnetic inclusions drawn so as to make the total charge inside the sphere vanish:

EC = 2π

5ε
(neR)2x[3x + 2− 3x1/3(1+ x)2/3]. (5)

Finally, the termFM denotes the free energy related to the s–d and d–d exchange
interactions. In the first approximation inAS/W , it may be represented in the form

FM(T ) = −AS
2
n+ JS

v(1+ x) +
xGA(T )

1+ x +
GF(T )

1+ x J = −ISz (6)

where v = a3 is the unit-cell volume, andz is the coordination number (it should be
recalled that, according to the condition for the initial antiferromagnetic ordering, the d–d
exchange integral for the first-nearest neighbours,I , is negative). The first term in (6) is
the difference in the s–d exchange energy between the ferromagnetic and antiferromagnetic
states, and the second term represents the energy of the d–d exchange required for conversion
of the antiferromagnetic ordering into ferromagnetic ordering. The functionsGA(T ) and
GF(T ), vanishing atT = 0, in the spin-wave region are the magnon free energies in the
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antiferromagnetic and ferromagnetic phases, respectively. Explicit expressions for these
functions will be given later.

Now a generalization to the case with double exchangeW � AS will be given. For
A > 0, equations (2)–(5) remain intact. In the first-nearest-neighbour approximation the
electron effective mass in the ferromagnetic state is related to the hopping integralt by the
standard expression 1/2ma2 = t . But the expression forFM changes drastically.

In analysing its structure, one should keep in mind that in the zeroth approximation in
W/AS each s electron is fixed at a certain site. Due to the s–d exchange interaction, the
spins of the s electron and the atom at which it is located combine to form a united spin of
magnitudeS + 1/2. The corresponding gain in the energy is equal toAS/2, independently
of the configuration of the set of d spins. In particular, the gain is the same for both
ferromagnetic and antiferromagnetic orderings. For this reason, the s–d exchange integral
cannot enter the quantityFM .

This quantity is nonzero only in the first order inW/AS, whereW = 2zt (z is the
coordination number). For the ferromagnetic ordering, the s-electron motion does not differ
from the free-electron motion. Hence, the s-electron band bottom should be located at
(−AS/2,−W/2). As for the antiferromagnetic ordering, it hinders the s-electron motion,
and s-electron band narrowing occurs. According to [4], the bandwidth with the anti-
ferromagnetic ordering is(2S + 1)1/2 times less than that with the ferromagnetic ordering.
For (2S)1/2→∞, it vanishes, and this result agrees with that obtained in [9] for classical
spins. As a result, the quantityFM can be represented by

FDE
M (T ) = −Wn

2

(
1− 1√

2S + 1

)
+ JS

v(1+ x) +
xGDE

A (T )

1+ x + G
DE
F (T )

1+ x (6a)

where, similarly to the functionsG in (6), the functionsGDE vanish atT = 0 (the superscript
DE denotes double exchange).

The total free energyF should be minimized with respect toR and x. The former
procedure can be carried out explicitly, taking into account the fact that onlyES andEC
areR-dependent. After this partial minimization, the free energy becomes a function of the
only remaining parameterx:

F(x) = EB + FM + 1.2γ nx[3x + 2− 3x1/3(1+ x)2/3]1/3(1+ x)2/9 (7)

where

γ =
[
µ2(n)e2n1/3

ε

]1/3

whereε is the dielectric constant of the crystal.
Strictly speaking, further investigation is possible only by numerical methods. Never-

theless, some important results can be found analytically.

3. Characteristics of the non-RKKY exchange in ferromagnetic semiconductors

In order to find the temperature dependence of the free energy, one should construct a
theory of the indirect exchange in magnetic semiconductors. The standard RKKY theory
is not appropriate, as the condition for its validity,µ� AS, is not met. This is especially
so in the case of the double exchange. But even in the wide-band case, the inequality
AS > µ, opposite to the RKKY validity condition, is typical of magnetic semiconductors
due to the relatively small charge-carrier density. So far, only the magnon spectrum for
the ferromagnetic ordering has been found for the magnetic semiconductors with wide and
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narrow bands [4]. In what follows, an expression for the free energy in the spin-wave region
will be deduced for both wide- and narrow-band cases. In addition, the magnon spectrum
will be found forS � 1 independently of the ratioAS/W . In both limiting cases,AS � W

andAS � W , the results obtained below reproduce results from [4].
The Holstein–Primakoff transformation for the d-spin operators

S+g =
√

2Sbg S−g =
√

2Sb∗g Szg = S − b∗gbg (8)

is applied to the Hamiltonian (1) withb∗g, bg being the d-magnon operators. Then the
Hamiltonian takes the form

H = H0+H1+H2 (9)

where

H0 =
∑

Ek,σ a
∗
k,σ ak,σ +

∑
ω0
qb
∗
qbq

H1 = A
√
S

2N

∑
(a∗k,uak+p,db

∗
p + a∗k,dak−p,ubp)

H2 = A

N

∑′
σa∗k,σ ak′,σ b

∗
qbq′

Ek,σ = Ek − ASσ ω0
q = −J (1− γq) γq = 1

z

∑
exp(iq ·∆).

Here the subscriptsu, d correspond toσ = +1/2 andσ = −1/2, respectively; the prime on
the summation sign in the expression forH2 indicates conservation of the quasimomentum.

One should stress that the d magnons introduced by (8) are not true magnons which
represent the oscillations of the total moment of the system consisting not only of the
localized d spins but also of spins of the delocalized s electrons. The number of true magnons
should be conserved, whereas the number of d magnons is not a conserved quantity. To go
over from the d magnons to the true ones, one should carry out a canonical transformation
which eliminates the terms linear in the magnon operators from the Hamiltonian (9):

H ′′ = exp(U)H exp(−U). (10)

Discarding small terms of the orderJ/A, one obtains for the operatorU

U = A
√
S

2N

∑(
a∗k,uak+q,db

∗
q

Ek,u − Ek+q,d +
a∗k,dak−q,ubq
Ek,d − Ek−q,u

)
. (11)

WhenA > 0, due to the conditionAS > µ one can retain in the transformed Hamil-
tonian just the terms which do not contain the operatorsak,d . Then, to first order in 1/S,
one has

H ′′ = H0+
∑

Ckqa
∗
k,uaq,ub

∗
qbq (12)

where

Ckq = A

2N

Ek+q − Ek
AS + Ek+q − Ek .

One finds the magnon spectrum to the same order in 1/S by averaging over the electron
states:

ωFq = ω0
q +

∑
Ckqfk (13)

wherefk is the s-electron distribution function.
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As follows from (13) and (12), for anyAS/W andn, the magnon frequency vanishes
at q → 0 as it should. Moreover, the energy spectrum for long-wavelength magnons does
not depend on the ratioAS/W . The condition for this is the inequality

AS � |Ek − Ek+q| for all k < kF

where kF is the Fermi momentum. This inequality is met for the entire Brillouin zone
in the case of double exchange. If one takes the electron energy in the first-nearest-
neighbour approximation,Ek = −ztγk, one obtains the following expression for the magnon
frequencies, assuming thatW � AS:

ωFq = (−J + JDE)(1− γq) (14)

where

JDE = zt

2SN

∑
γkfk.

One sees from (14) that the length of the indirect exchange for the double-exchange
case is only one lattice constant, which manifests very distinctly the non-RKKY nature
of the indirect exchange. This result agrees with results of neutronographic studies of a
presumably double-exchange material, La0.7Pb0.3MnO4 [10].

In the opposite limiting case of wide bands, the magnon frequency is approximated by
the expression

ωq = −J (1− γq)+ Aνq2

q2
0 + q2

(15)

whereν = nv andq2
0 = 2mAS.

In the case considered (I < 0), the quantityJ is positive. Hence, as follows from (14)
and (15), the ferromagnetic ordering in doped antiferromagnetic semiconductors becomes
relatively stable only after the electron density reaches a critical value:

νF = 4J

A
if W � AS (16)

νF = 2JS

zt
if W � AS. (17)

But this does not mean that the ferromagnetic ordering is absolutely stable atn > nF .
It will be shown below that within a density rangenF < n < nu the phase-separated state
is more energetically favourable that the ferromagnetic state.

One can hope that equations (14) and (15) are reasonable not only for large spins but
also for spins of the order of 1. First, they meet the requirement for theq-dependence of
the frequencies of the long-wavelength ferromagnetic magnons independently of the spin
magnitude. Second, equation (14) displays an expected dependence onW : the magnon
frequencies in the double-exchange limit are of the first order inW/AS. The accuracy
of equation (14) can be estimated by comparing equation (17) with a similar expression
obtained in [4] by a variational procedure valid for any spin magnitudes: the latter differs
from equation (17) by the replacement ofS by S+ 1. This justifies the assumption that the
relative correction toJDE is close to 1/S.

The fact that in the wide-band case equation (15) gives a reasonable estimate for the
magnon frequencies forS ∼ 1 may be confirmed by the following considerations based on
the presence of an additional small parameterAS/W .

If one starts from an entirely ferromagnetic state and seeks for a change in the energy due
to a reduction of the spin projection of one of the atoms by 1, then atI = 0 one finds it to
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be equal toAν/2 independently ofS. But this is just the frequency of the short-wavelength
magnons,q > q0, given by equation (15) atI = 0. Hence, in the short-wavelength limit
equation (15) is valid for allS.

The situation with the long-wavelength magnons (q < q0) is much more complicated:
their frequencies are nonanalytical inAS/W , and it is precisely this nonanalyticity that
ensures the vanishing of the magnon frequency forq → 0. Due to the nonanalyticity,
the rise in the magnon frequencies withq2 should be very steep: the long-wavelength
frequencies are proportional not toA but to a much larger quantityW . Obviously, as the
nonanalyticity is a consequence of the symmetry of the system, it should remain also for
smaller spins.

An additional confirmation of the applicability of (15) for smallS can be obtained by
comparison of the temperature dependence of the s-electron spectrum found from (12) by
averaging over magnons atS � 1 and that obtained in reference [11]. In the latter case,
applying a variational procedure to Hamiltonian (1), a result was obtained atAS/W � 1
valid for all of the spin magnitudes. In the leading approximation inAS/W , these two
results coincide.

For these reasons, at least when calculating such integral quantities as the free energy,
equation (15) can be considered a reasonable estimate for all spin magnitudes.

4. Thermally induced phase separation

In this section we will try to elucidate in what manner the concentration or conventional
temperature phase transitions take place from the phase-separated state to the uniform
state. In [1–5] an opinion was expressed, and confirmed by numerical calculations, that
the concentration phase transition should be of second order. A more accurate investigation
carried out below shows that, in reality, it should be of first order but very close to a
second-order phase transition. The fact that the transition must be abrupt is seen from the
following considerations. If one assumes the opposite, i.e. thatx = 0 at the transition point,
then one finds from equation (7) that d2F(x)/dx2 is negative, diverging asx−2/3.

Hence, the condition that dF/dx = 0 at x → 0 corresponds not to a minimum but to a
maximum of the free energy. In other words, the volume of the antiferromagnetic phase in
the phase-separated state cannot be arbitrarily small. Correspondingly, at a certain density
νu = nuv, a transition from the phase-separated state to the uniform state takes place, on
increase in density. To ensure the stability of the ferromagnetic state, the densityνu should
exceedνF (given by equations (16) and (17)).

As the volume of the antiferromagnetic phase cannot be arbitrarily small, the conc-
entration and temperature phase transitions from the ferromagnetic to the phase-separated
state should be first order. With allowance for (7), the condition is as follows:

F(x, T ) ≡ F(x, 0)+ xGA

1+ x +
GF [n(1+ x)]

1+ x = F(0, 0)+GF(n). (18)

The s–d exchange energy(−ASn/2) is the same for both of these states and for this
reason does not enter equation (18). In (18), account is taken of the fact that in the phase-
separated state the electron density in the ferromagnetic phase is notn but n(1+ x).

The considerations presented above are confirmed by numerical calculations for the case
whereW � AS based on equation (18) atT = 0. The following values of the parameters
were chosen:a = v1/3 = 3×10−8 cm,m = 10−27 g, ε = 10,AS = 1 eV (this corresponds
to q0a = 1.7). Then, if one takesJS = 0.0005 eV, one finds from the condition for the
minimum energy (7) atT = 0 that the energyEps of the phase-separated state reaches
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Figure 1. A qualitative diagram of the system:T
againstν.

the energyEu of the uniform state atνu = 0.003 565; that is, with allowance for (16),
νu/νF = 1.78 (figure 1).

The E versusx curve attains two minima, atx1 = 0 and x3 = 0.08, separated by
a maximum atx2 = 0.01 (as thex1-point lies at the boundary of thex-interval, the
equality dE/dx = 0 is not met there). If one takesJ = 0.001 eV, then theE(x) curve at
νu = 0.005 43 displays a similar behaviour, with the maximum atx2 = 0.01 and with the
minimal values atx1 = 0 andx3 = 0.06 (νu/νF = 1.37). These numerical results confirm
the above-mentioned conclusion: on increase in the electron density, the volume of the
antiferromagnetic phase disappears abruptly atνu.

Our main aim is to prove the possibility of thermally induced re-entrant phase transitions
from the uniform ferromagnetic state to the two-phase state atν slightly exceedingνu. To do
this, it is sufficient to restrict consideration to the spin-wave region. Obviously, a necessary
condition for this transition isGF > GA.

In order to calculate the free energy of the system, one should take into account the fact
that the electron gas remains strongly degenerate at all actual temperatures. For this reason,
one can replace the operatorsa∗k,uak,u in the Hamiltonian (12) by the electron distribution
function atT = 0. This means that the functionsGF(T ) andGA(T ) in (6), (6a) are nothing
but the free energies of magnons with the frequency spectrum (13)–(15) in the ferromagnetic
state and with the spectrum

ωAq =
√

1− γ 2
q (19)

in the antiferromagnetic state.
In both cases the free energy is given by the expression [12]

G = T
∑

ln

[
1− exp

(
−ωq
T

)]
. (20)

First, the case ofT � TC/S realized for small spins over the entire spin-wave region
or for large spins at very low temperatures will be investigated. In the case of wide bands
considered here, it will be assumed that only the magnon wave vectors withq less than
q0 are essential. Then, in the first-neighbour approximation, one can write, instead of
equation (15),

ωFq =
Jef q

2a2

2
(21)

where

Jef = ztν

2S
− J.
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As seen from equation (21), due to the nonanalyticity of the spectrum inAS/W , the
indirect exchange strength (the first term in equation (21)) at smallq is proportional not to
AS but to a much larger quantityW . This reduces the ferromagnetic magnon number and
enhances the free energy as compared with the RKKY theory predictions. In other words,
this should facilitate the phase separation. Substituting (21) into (20) and representing the
logarithmic function by an exponential series, one obtains the following expression for the
ferromagnetic magnon free energy:

GF = −23/2ζ(5/2)NT 5/2

8π3/2J
3/2
ef

(T � Jef q
2
0a

2) (22)

whereζ(n) is the Riemann zeta function. Using (19), in the same long-wavelength approx-
imation one obtains for the antiferromagnetic magnon free energy

GA = 2ζ(4)NT 4

π2J 3
(T � J ). (23)

Hence, under the condition thatW � AS,

GA/GF ≈ 5

(
T

J

)3/2(
Jef

J

)3/2

= 5

(
T

J

)3/2 [
(W/AS)

(
ν

νF

)
− 1

]3/2

. (24)

This means that forT → 0 the transition from the uniform state to the nonuniform
state is impossible even ifν → νu. But it becomes possible at higher temperatures. For
T > (J/3)(AS/W)(νF /ν) one may neglectGF as compared withGA, and the transition
from the ferromagnetic state to the phase-separated state takes place at

Tu =
{
π2(1+ x)[F(x, 0)− F(0, 0)]J 3

2ζ(4)x

}1/4

. (25)

Obviously, on further increase in temperature, the phase-separated state should melt.
Now the case ofTC/S � T � TC for large spins will be investigated, whereTC is the

Curie point. It corresponds to the spin-wave region due to the conditionS � 1. As the
frequencies of the antiferromagnetic magnons should also be belowT , from equations (19)
and (20) one easily obtains the following estimate for the antiferromagnetic magnon free
energy:

GA = TN
(

ln
J

T
− 1

12

)
. (26)

As to the free energy of the ferromagnetic magnons, for the case of the double exchange
(14) it differs from (20) by the replacement of the antiferromagnetic exchange integralJ by
JDE− J . In the wide-band case, to make the integration overq in equations (20) and (15)
consistent, an isotropic interpolation for the direct-exchange contributionω0

q, equation (9),
is used. It matches the corresponding isotropic approximation for the indirect-exchange
contribution (15) and goes over to an exact expression forω0

q at the minimum and at the
maximum of the magnon band:

ω0
q ≈

−J (aq)2
2[1+ 0.1841(qa)2]

. (27)

In this temperature range one may putG = T g where the functiong is temperature
independent. Then, using equation (18), one finds the following expression for the
temperature of the transition from the uniform to the phase-separated state:

Tu = (1+ x)[F(x, 0)− F(0, 0)]

xZ
(28)
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where

Z = gF (ν)− gA − ν dgF /dν. (29)

Using the same value ofq0a = 1.7 as at the beginning of this section, one finds by
a numerical integration of equation (20) over a sphere with a radius of(6π2)1/3a, with
allowance for (15) and (29), that the quantityZ becomes positive forν/νF exceeding
1.75. This means that the phase transition from the uniform state to the phase-separated
state should take place at such large values ofν. According to the numerical value for
νu presented at the beginning of the section, such values are quite realistic. Hence, the
transition from the ferromagnetic state to the phase-separated state induced by increasing
temperature is possible at more elevated temperatures, too.

If ν is below νu, and the quantityZ is negative, then this is evidence that a first-
order phase transition from the phase-separated state to the uniform ferromagnetic state
should take place with increasing temperature. A qualitative phase diagram of the system
is presented in figure 1.

5. Conclusions

Phase separation into a highly conductive ferromagnetic phase and an insulating anti-
ferromagnetic phase in degenerate antiferromagnetic semiconductors is investigated. The
density of the charge carriers is assumed to be so high that atT = 0 the volume of the
antiferromagnetic phase is very small or zero. On increase in the electron density, an abrupt
concentration phase transition takes place from the phase-separated state to the uniform
state. If the density exceeds its critical value at which the concentration phase transition
takes place, then the ground state of the system is uniform. On increase in temperature,
the state at first remains uniform, but at higher temperatures the phase separation can take
place. At still higher temperatures the thermally induced phase-separated state melts, and
the reverse transition to the uniform state takes place.
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